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LETTER TO THE EDITOR 

A lattice model of liquid crystals with matrix order 
parameter 

N Angelescuf and V A Zagrebnov 
Joint Institute for Nuclear Research, Dubna, Head Post Office, P 0 Box 79, Moscow, USSR 

Received 28 June 1982 

Abstract. A lattice model with full rotational invariance is proposed for describing nematic 
liquid crystals. Orientational long-range order at low temperature is proved using the 
infrared bound method. 

An actual problem of the theory of liquid crystsls is to construct models exhibiting 
at sufficiently low temperature orientational long-range order (LRO), which should 
however not be accompanied by positional LRO in all space directions. Such is the 
experimentally observed behaviour, and a phenomenology based on the Landau theory 
is by now well developed (de Gennes 1974, ch 3, Pikin 1981). The simplest case is 
the transition from an isotropic to a nematic liquid phase. Onsager (1949) argued 
that the ordering could be explained as an excluded volume effect, i.e. it should be 
sufficient to assimilate the molecules to hard rods without any further interaction. 
Following this idea, various models, typically polymer models on a lattice, have been 
proposed. Though approximate treatments indicate the appearance of an oriented 
phase at high density (di Marzio 1961; further references in de Gennes 1974, ch 2.2), 
this is questionable, in view of the rigorously established fact that the simplest model 
of this kind, the monomer-dimer system, has no phase transition (Heilmann and Lieb 
1972). However, it has been recently proved that, when switching on suitable attractive 
forces between dimers, the monomer-dimer model exhibits an oriented phase at low 
temperature, and thereby strong arguments (though no formal proof) have been given 
in favour of the absence of positional order (Heilmann and Lieb 1979, Abraham and 
Heilmann 1980). This kind of lattice model still has the highly unphysical feature of 
a priori allowing the molecules to point only along a finite number of directions defined 
by the underlying lattice. 

Another line of thought originates with Maier and Saupe (1959,1960). For liquids 
consisting of long non-chiral (i.e. identical to their reflected images) molecules without 
permanent dipole moment, they attribute the nematic transition to the dispersion 
forces (arising as the second-order perturbation terms of the pure Coulomb interac- 
tion), which favour alignment of the long molecular axes, while the form of the 
molecule (excluded volume effect) should play a secondary role. Their calculation of 
the dipole-dipole part of the dispersion forte gives the following expression for the 
intermolecular potential (see also Blinc and Zekg 1974, Blinc et a1 1974): 

Vij = -a(lri -rjl)P2(cos eij),  0 < a(r)  - r-6 ( r  + a), (1) 
t On leave from Institute of Physics and Nuclear Engineering, Bucharest, Romania. 
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where ri, rj are the positions of the two molecules, eij is the angle between their long 
axes and P2 is the second Legendre polynomial. The interaction (1) is manifestly 
rotational invariant. For this interaction supplemented with a hard core condition, 
Romerio (1978) proved the absence of ordering in one and two dimensionsf. For 
higher dimensions the model has been treated only within the mean field approximation 
(Maier and Saupe 1959,1960, Blinc et a1 1974), which provides the generally accepted 
phenomenological description of the nematics in terms of a matrix order parameter 
(Pikin 1981). 

In the note we propose a new lattice model of a nematic liquid crystal, which is 
the lattice variant of the Maier-Saupe model, and prove for it orientational LRO at 
low temperature. Keeping in mind that matrices are adequate objects for describing 
the nematic phase, we shall define for every molecule with long axis along the unit 
vector d the matrix 

Q a P  = dadP -fa,, (a, P = 1,273) (2) 

Vij = -$a(/ri  -rj l)  Tr(QiQi). 

and transcribe the interaction (1) in terms of these matrices as 

(3) 

More generally, the state space of a molecule is taken as the set, M,  of all real 
symmetric 3 x 3 matrices, Q, with Tr Q = 0; the rotation group O(3) acts on M as 
Q HRQR-' (R E O(3)); an 0(3)-invariant probability measure, v, is given on M such 
that 

(For instance, in order to describe uniaxial molecules, for which Q is given by equation 
(2), v should be taken as the unique O(3)-invariant probability measure concentrated 
on {Q E M :  Tr(QZ) = 5 ,  Tr (Q3) = $}.) 

The molecules live on the sites of the cubic lattice Z 3 .  A configuration is specified 
by the location of the molecules, i.e. by a function Z 3  3 x  - n x  E (0, 1) and, for all x 
with n, = 1, by the state, Q, E M ,  of the molecule at x. Molecules interact according 
to equation (3); with every molecule we associate a chemical potential F. Thus, for 
a parallelepiped A c Z with periodic boundary conditions, the energy of a configur- 
ation (n, Q) = { (nx ,  Q,): x E A} is 

where Jxy = 5 X ( z E ~ 3 :  z=y(mod A))  a (Ix - 2  I). The corresponding Gibbs state is defined by 

dv(Q,) exp[ -PHh ,  Q)lf(n, Q) (6) 
(f)A = 2,' {? I~=&:xEA)  1 {xcA!x=l) 
where ZA is the partition function. 

One could, alternatively, give up considering explicitly the occupation numbers a, 
and instead, using as new variables D, = nxQx, modify the a priori measure on M to 
dvo = dv + S O ,  where So is the unit mass at 0 EM. Equation ( 5 )  becomes 

HAW) = - c J x y  Tr(D,D,)-F c [1 -So({Dx))1. ( 5 ' )  
{x. X E A  

t For finite-range interactions, but relaxing the hard core condition up to superstability, Shlosman (1979) 
proved the rotational invariance of the Gibbs states for d = 1,2.  
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Proposition. Let a (Ix 1) (x E Z 3 )  be given either by aSlxl,l, or by a IxI-’ ( y  > 3), with 
a a positive constant. Then, there exists po(<O) such that, for every p > po, one can 
find a @ ( p ) ,  such that for @ > @ ( p )  every limit point ( a )  of the states (a),, has 
orientational? LRO, i.e. 

lim Tr(D,D,) >Tr((D,)’) = 0. 
Ix-yl-r=J 

(7) 

The proof is an application of the infrared bounds, which hold because the 
interactions we choose are reflection positive with respect to the reflections in planes 
without sites (Frohlich 1978, Frohlich et a1 1978). We shall only sketch the main steps. 

= 0. (8) 

Indeed, (Dx)A E M and can be diagonalised by a rotation R E O(3). Thus, applying R 
to all D,, y E A, and exploiting the O(3) invariance of ( e),,, one concludes that (Ox),, 
is in fact diagonal. One sees analogously, by considering rotations which permute the 
coordinate axes, that (D?)A does not depend on a. As Tr (0,) = 0, we obtain (8). 

First, the state ( )A satisfies 

Using translation invariance, one has 

C A  3 IAl-* (Tr(DxDy))A = [AI-’ Tr(fi;)A 
x , y e A  

where A* is the Fourier dual of A and f i p  = IAl-1’2XxeA e-ipxDx. In order to prove 
equation (7), it is sufficient to show that lim infAPZ3 c,,> 0, which is done by providing 
suitable lower and upper bounds on the first and, respectively, second term in the 
RHS of equation (9). 

The upper bound on Tr(fi&-p)A for p # 0 is obtained in the usual way from the 
reflection positivity (Frohlich et a1 1978): 

(Tr(fi&-p))A s constant/[@(.f(~) -.f(p))l (10) 

where .f is the Fourier transform of J. Under our assumption, the function on the 
RHS is bounded by an integrable function, so its sum over A* divided by [AI converges 
for A P Z 3  to (constant/@) ]d3p ( d ( O ) - d ( p ) ) - ’ .  

The lower bound on (Tr(D:))A is obtained by chessboard estimates as follows. 
Let ,Y$) be the indicator of the event {Tr(D:) < E } .  Then 

(Tr(oZ,)>A~&(l-Cy2’)A). (11) 

By chessboard estimates 

so we have to bound from above the probability that Tr(D$) < E  at all sites y E A. The 
energy of such a configuration is majorised using ITr(D,D,)/ s [Tr(Df) Tr(D,)] < E ,  

2 1/2 

t Let us stress that equation (7) does not imply ‘positional’ LRO, which should mean limlr-yl-.m [(n,n,) - 
(nAnJ1 > 0. 
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which gives 

--H\(D)S& c J x ,  +P@(P)I.j/ = [ ~ l l ~ I / + ~ @ ( ~ ) I l ~ ~ I ~  (12) 
I X . L ) C  1 

where @ ( p ) =  1 for ,U 3 0  and = O  otherwise, and I l a l / = ~ X x , ~ 3 a ( l x ~ ) .  

V, of fi, such that 
A lower bound on 2, is obtained by choosing a D E supp v and a neighbourhood 

Tr(D'D")>Tr(fi2)(1 - & ' ) > O ,  VD', D"E V, .  (13) 

For configurations {Ox} such that D,  E V, for all x E A, we have 

Restricting integrations only to such configurations, we obtain 

2 :'"' 3 V (  V E t )  exp(p[(l - e '1 Tr(fi*)IlaI/ +- p I}. (15) 

Using these estimates in the expression for (n, x:)),, we have 

One sees that for p > p o =  - //all max,=jEsuPpyTr(fi2), ( x ~ ) ) , , + O  for p -,CO, uniformly 
in A, and introducing this into equation (1 l ) ,  that (Tr(D;)),, is bounded away from zero. 

Using these estimates in equation (9), we obtain c,, z constant > 0 for p > pa and 
p > p ( p ) ,  with po, p ( ~ )  independent of A, whence the assertion follows. 

According to equation (7), the matrix (Dx)=(Qx)  should be non-zero in a pure 
phase, so it plays the role of the order parameter. On the other hand, at high 
temperature, LRO is absent: Tr(D,D,) decays to zero in the same weighted summability 
sense as the interaction (see e.g. Gross (1979) for a very general result of this kind). 

We believe that at least its full O(3)-invariance makes the model look physically 
more realistic than the interacting dimer model. Technically, the model seems to be 
more manageable than the dimer models. For instance, it allows in principle an 
application of the renormalisation group techniques. Our proof of LRO works for 
long-range forces with power fall-off, instead of only the nearest-neighbour interac- 
tions allowed for dimers by Heilmann and Lieb (1979) and Abraham and Heilmann 
(1980). 

On the other hand, our approach almost completely neglects excluded volume 
effects; in fact, i t  takes them into account only via the lattice. These would appear 
with the wrong sign in the Hamiltonian and would destroy its reflection positivity. 
We have no proof of the absence of positional LRO, either. However, we conjecture 
that every limit state ( .) when restricted only to the variables {n,}  is clustering, at 
least for large p and p where orientational LRO appears. Intuitively this should be 
the case, because in this regime the typical Q-configurations vary slowly in space, 
which results in effective attraction between molecules; so, as far as {n,} are concerned, 
the model should behave as a lattice gas with attractive interactions at high p. 

We gratefully acknowledge useful discussions with Professor Ia G Sinai, during which 
the idea of this work arose. 
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